Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Infect Dis ; 121: 58-65, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1804270

ABSTRACT

BACKGROUND: As several vaccines for SARS-CoV-2 have been developed, a large proportion of individuals have been vaccinated worldwide so far. The rapid and accurate immunoassays are urgently needed for detecting the specific virus-neutralizing antibody (NAb), which reflect the protective effect of the vaccines among different populations. METHODS: In this study, we designed a quantum dot lateral flow immunoassay strip (QD-LFIA) for smartphones for the detection of specific IgG or neutralizing antibodies in SARS-CoV-2 in human serum or whole blood samples. The recombinant receptor binding domain of the SARS-CoV-2 spike protein was used as the antigen to combine with NAb or angiotensin-converting enzyme 2. RESULTS: Among 81 patients who recovered from COVID-19 who were diagnosed using the nucleic acid test initially, 98.8% (80/81) were positive for IgG and 88.9% (72/81) were positive for NAb by QD-LFIA. Among 64 individuals inoculated with inactivated vaccines and six subunit vaccines, 90% (63/70) were positive for IgG and 82.9% (58/70) were positive for NAb by QD-LFIA, whereas no cross-reaction was found in 150 healthy blood donors, two patients with influenza B, and three patients with common cold. CONCLUSION: The established platform could achieve a rapid and accurate detection of NAb specific to SARS-CoV-2, which could be used for detecting the protective effect of the vaccines in areas of world that currently affected by the pandemic.


Subject(s)
COVID-19 , Quantum Dots , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Immunoassay , Immunoglobulin G , SARS-CoV-2 , Smartphone , Spike Glycoprotein, Coronavirus
2.
Front Microbiol ; 12: 692831, 2021.
Article in English | MEDLINE | ID: covidwho-1403487

ABSTRACT

Since December 2019, a novel coronavirus (SARS-CoV-2) has resulted in a global pandemic of coronavirus disease (COVID-19). Although viral nucleic acid test (NAT) has been applied predominantly to detect SARS-CoV-2 RNA for confirmation diagnosis of COVID-19, an urgent need for alternative, rapid, and sensitive immunoassays is required for primary screening of virus. In this study, we developed a smartphone-based nanozyme-linked immunosorbent assay (SP-NLISA) for detecting the specific nucleocapsid phosphoprotein (NP) of SARS-CoV-2 in 37 serum samples from 20 COVID-19 patients who were diagnosed by NAT previously. By using SP-NLISA, 28/37 (75.7%) serum samples were detected for NP antigens and no cross-reactivity with blood donors' control samples collected from different areas of China. In a control assay using the conventional enzyme-linked immunosorbent assay (ELISA), only 7/37 (18.91%) serum samples were detected for NP antigens and no cross-reactivity with control samples. SP-NLISA could be used for rapid detection of SARS-CoV-2 NP antigen in primary screening of SARS-CoV-2 infected individuals.

3.
Sens Actuators B Chem ; 349: 130718, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1401868

ABSTRACT

The establishment of a simple, low-cost, high-sensitive and rapid immunoassay for detecting SARS-CoV-2 antigen in human blood is an effective mean of discovering early SARS-CoV-2 infection and controlling the pandemic of COVID-19. Herein, a smartphone based nanozyme linked immunochromatographic sensor (NLICS) for the detection of SARS-CoV-2 nucleocapsid protein (NP) has been developed on demand. The system is integrated by disposable immunochromatography assay (ICA) and optical sensor devices. Immunoreaction and enzyme-catalyzed substrate color reaction were carried out on the chromatographic strip in a device, of which the light signal was read by a photometer through a biosensor channel, and the data was synchronously transmitted via the Bluetooth to the app in-stored smartphone for reporting the result. With a limit of detection (LOD) of 0.026 ng/mL NP, NLICS had the linear detection range (LDR) between 0.05 and 1.6 ng/mL NP, which was more sensitive than conventional ICA. NLICS took 25 min for reporting results. For detection of NP antigen in clinical serum samples from 21 COVID-19 patients and 80 healthy blood donor controls, NLICS and commercial enzyme linked immunosorbent assay (ELISA) had 76.2% or 47.6% positivity, and 100% specificity, respectively (P = 0.057), while a good correlation coefficient (r = 0.99) for quantification of NP between two assays was obtained. In conclusion, the NLICS was a rapid, simple, cheap, sensitive and specific immunochromatographic sensing assay for early diagnosis of SARS-CoV-2 infection.

4.
Biosens Bioelectron ; 192: 113550, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1347504

ABSTRACT

The level of neutralizing antibody (NAb) to SARS-CoV-2 could be used to evaluate the acquired protective immunity of COVID-19 patients or vaccinees. Here we develop a track-etched microporous membrane filtration microplate (TEM) and optical fibers transmitted immunosensing smartphone platform (TEMFIS) based surrogate virus neutralization test (TEMFIS-sVNT) for rapid one-step testing of NAb to SARS-CoV-2. Coefficient variation (CV) of intra-assay and inter-assay precisions of TEMFIS-sVNT varied below 9% or 14%, respectively. By agreement with pseudovirus neutralization test (pVNT) and ELISA-sVNT for testing of serum samples from 41 COVID-19 patients, 50 COVID-19 vaccinees and 320 healthy blood donors (P = 0.895), TEMFIS-sVNT detected the NAb positivity (sensitivity) in 92.68% COVID-19 patients and 76% vaccinees, but the NAb negativity (specificity) in 100% blood donors. In conclusion, TEMFIS-sVNT can be used for quantitatively point-of-care testing of neutralizing antibody to SARS-CoV-2 in blood samples from COVID-19 patients and vaccinees.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Smartphone
5.
Emerg Microbes Infect ; 10(1): 1002-1015, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1231006

ABSTRACT

ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Female , Genetic Vectors , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
6.
J Med Virol ; 93(3): 1743-1747, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196459

ABSTRACT

Since the first case of COVID-19 reported in late December of 2019 in Wuhan, China, the SARS-CoV-2 virus has caused approximately 20 million infections and 732 thousand deaths around the world by 11 August 2020. Although the pathogen generally infects the respiratory system, whether it is present in the bloodstream and whether it poses a threat to the blood supply during the period of the outbreak is of serious public concern. In this study, we used enzyme-linked immunosorbent assay (ELISA) to screen total antibodies against SARS-CoV-2 in 2199 blood donors, who had donated blood at the Guangzhou Blood Center during the epidemic. The Ig-reactive samples were further characterized for IgA, IgG, and IgM subtypes by ELISA and viral nucleic acid by real-time polymerase chain reaction. Among the 2199 plasma samples, seven were reactive under total antibodies' screening. Further testing revealed that none of them had detectable viral nucleic acid or IgM antibody, but two samples contained IgA and IgG. The IgG antibody titers of both positive samples were 1:16 and 1:4, respectively. Our results indicated a low prevalence of past SARS-CoV-2 infection in our blood donors, as none of the tests were positive for viral nucleic acid and only 2 out of 2199 (0.09%) of samples were positive for IgG and IgA. There would be a limited necessity for the implementation of such testing in blood screening in a COVID-19 low-risk area.


Subject(s)
Antibodies, Viral/blood , Blood Donors/statistics & numerical data , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , China , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , RNA, Viral/blood , Young Adult
7.
Transfusion ; 60(11): 2597-2610, 2020 11.
Article in English | MEDLINE | ID: covidwho-633984

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) epidemic affected blood collection in Guangzhou, China. STUDY DESIGN AND METHODS: This paper includes three studies. The observational study reported the trends of blood collection during the epidemic in Guangzhou, China. The cross-sectional survey investigated factors influencing blood donation during the COVID-19 epidemic, and a self-administered questionnaire was given to 1584 street whole blood donors (SWBDs) who donated during the epidemic. The randomized controlled trial involved 19 491 SWBDs who donated in 2019 but did not donate during the epidemic. Trial participants were randomly assigned to two intervention groups: Group 1 completed Questionnaire 1, which contained precautionary measures in response to COVID-19 and other messages about blood donation during the epidemic; Group 2 completed Questionnaire 2, which did not include this information. A control group did not receive any questionnaire. RESULTS: As measures were implemented, the number of blood donors increased accordingly. Both first-time and repeat SWBDs perceived the same level of blood need and donated blood because it would save lives. SWBDs who completed Questionnaire 1 expressed a greater intention to donate during the epidemic. Enabling blood donors to perceive a higher level of blood need and a lower level of COVID-19 infection risk related to blood donation mobilized experienced SWBDs to donate within 3 weeks. Intention-to-treat analyses and average-treatment-effect-on-the-treated estimations confirmed that Questionnaire 1 could motivate SWBDs to actually donate blood. CONCLUSION: Various measures could ease blood shortage during the COVID-19 epidemic. Administration of Questionnaire 1 could increase blood donations during the epidemic.


Subject(s)
Blood Donors/supply & distribution , COVID-19/epidemiology , Patient Selection , Adult , Blood Donors/statistics & numerical data , COVID-19/blood , COVID-19/virology , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL